Search results

Search for "diffusion barrier" in Full Text gives 22 result(s) in Beilstein Journal of Nanotechnology.

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • 100 nm are the main choice for the design of electrochemical sensors. These characteristics all combine to improve the electrochemical process. A sensing or working electrode that acts as a transducer, an electrolyte, a diffusion barrier, and a reference counter electrode are the common components of
PDF
Album
Review
Published 01 Jun 2023

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • . Due to lowered diffusion barrier and adsorption energy, the two-dimensional molecular layers can be affected by dewetting and may change into three-dimensional clusters [47]. In return, the reduced molecule–surface interaction on insulating films or bulk insulators can stabilize highly reactive
  • , or metals [83]. Rothe et al. [84] demonstrated that semimetallic graphene is an appropriate buffer layer for the physical and chemical decoupling of rubrene from Pt(111). The strong molecule–surface interaction on Pt(111) is expressed by hit-and-stick adsorption due to a substantial diffusion barrier
PDF
Editorial
Published 23 Aug 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • holds also for layered materials. Single-molecule prototypes or molecular nanostructures are often prepared on metals, which usually provide a sufficiently low diffusion barrier for efficient self-assembly and simultaneously allow for in-depth analysis through atomically precise tools from the family of
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • molecular state at temperatures of 80 K and above prevents the molecules from locking into a compact self-assembled layer at low coverage. When stationary molecules with a rotational potential barrier larger than the diffusion barrier self-assemble, the intermolecular forces guide the molecules to diffuse
PDF
Album
Full Research Paper
Published 05 Oct 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • mobility. This additional diffusion barrier thus hampers the molecular self-assembly and can be overcome by a higher substrate temperature during the film growth, which agrees with our structural findings above. Conclusion To summarize, we investigated the influence of an h-BN interlayer on the optical
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • Figure 3a) on the sample held at 230 K leads to large densely packed molecular islands on the MoS2 areas (Figure 3b). The large size and high degree of order of these islands reflects a low diffusion barrier on the MoS2 substrate. The moiré pattern of MoS2 remains intact and visible through the molecular
PDF
Album
Full Research Paper
Published 20 Jul 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • applications. These materials are also interesting as supports for low-dimensional metals for catalysis, while recent work has shown increased interest in using 2D materials in the electronics industry as a Cu diffusion barrier in semiconductor device interconnects. The interaction between different metal
  • between the adsorption of single Cu atoms and the adsorption of larger structures from the publications discussed above. We choose the Cu–MoS2 ML system due to its potential significance for the electronics industry as a copper diffusion barrier [12][13][14][15]. Studying small Cun (n = 1–4) structures
  • (DOS) analysis shows the emergence of mid-gap states, indicating that the system is changing from semiconducting to metallic as Cu atoms are adsorbed, making it suitable for application as a Cu diffusion barrier. Computational Methods All calculations, for bulk MoS2 and the 2D monolayer, were carried
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Au–Si plasmonic platforms: synthesis, structure and FDTD simulations

  • Anna Gapska,
  • Marcin Łapiński,
  • Paweł Syty,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2018, 9, 2599–2608, doi:10.3762/bjnano.9.241

Graphical Abstract
  • efficient diffusion barrier against metal atoms [24], so Au–Si monoatomic layer could be present on the surface of the support. Exemplary absorbance spectra recorded for the 2.8 nm Au film after annealing at 550 °C for 15 min is presented in Figure 10. A strong maximum corresponding to plasmon resonance is
PDF
Album
Full Research Paper
Published 28 Sep 2018

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • layers [60] and via edges [51]. Because the diffusion barrier of adsorbed silicon atoms on top of MoS2 is assumed to be very low and the experiments are performed at room temperature, it is expected that silicon adatoms can easily diffuse over the surface to reach these cracks, wrinkles and step edges
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017

Adsorption and diffusion characteristics of lithium on hydrogenated α- and β-silicene

  • Fadil Iyikanat,
  • Ali Kandemir,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1742–1748, doi:10.3762/bjnano.8.175

Graphical Abstract
  • . However, the diffusion barrier of a Li atom on H-α-Si is much higher than that on H-β-Si. The energy surface calculations show that a Li atom does not prefer to bind in the vicinity of the hydrogenated upper-Si atoms. Strong interaction between Li atoms and hydrogenated silicene phases and low diffusion
  • H atoms, the nearest adsorption site to 6Si is 2H. It is reasonable to assume that Li atoms diffuse through these two favorable adsorption sites. The diffusion barrier of a Li atom between these two nearest binding sites is 768 meV. However, once the Li atom overcomes the energy barrier, its
  • adsorption sites is most likely. The diffusion barrier of a Li atom on H-β-Si is 411 meV. Therefore, the energy barrier for the Li atom on H-β-Si is almost half of that on H-α-Si. As can be seen from Figure 3c, the 2HT′ site is the energetically most favorable site for the second Li atom on H-β-Si. The
PDF
Album
Full Research Paper
Published 23 Aug 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  •  9a(i)), or as a passivation layer (Figure 9a(iii)). In the latter case, the passivation effect is accomplished by Parylene C film creating a diffusion barrier that separates the conductive channel from electronic trap states in the SiO2 dielectric. It is worth noting that the charge-trapping effect
PDF
Album
Review
Published 28 Jul 2017

The integration of graphene into microelectronic devices

  • Guenther Ruhl,
  • Sebastian Wittmann,
  • Matthias Koenig and
  • Daniel Neumaier

Beilstein J. Nanotechnol. 2017, 8, 1056–1064, doi:10.3762/bjnano.8.107

Graphical Abstract
  • methods have been proposed [7], which can be grouped into the following categories. 1.1 Ex situ transfer The CVD growth substrate can either be a copper foil, which is most commonly used, or a Cu film deposited by physical vapor deposition (PVD) on a silicon wafer substrate with a diffusion barrier
  • diffusion barrier, it suffers from the diffusion of Si from the substrate towards the Cu surface generating holes in the graphene film. Decreasing the deposition temperature to below 800 °C can improve the defect level but cannot completely eliminate it [10]. Also the transfer onto a dielectric substrate
  • a diffusion barrier against humidity, chemicals and gases during further processing. In addition, it has to be deposited using a process with minimal influence on graphene, e.g., high-temperature or plasma-CVD processes are to avoided. Encapsulation with exfoliated single-crystalline h-BN layers
PDF
Album
Review
Published 15 May 2017

Tuning the spin coherence time of Cu(II)−(bis)oxamato and Cu(II)−(bis)oxamidato complexes by advanced ESR pulse protocols

  • Ruslan Zaripov,
  • Evgeniya Vavilova,
  • Iskander Khairuzhdinov,
  • Kev Salikhov,
  • Violeta Voronkova,
  • Mohammad A. Abdulmalic,
  • Francois E. Meva,
  • Saddam Weheabby,
  • Tobias Rüffer,
  • Bernd Büchner and
  • Vladislav Kataev

Beilstein J. Nanotechnol. 2017, 8, 943–955, doi:10.3762/bjnano.8.96

Graphical Abstract
  • the diffusion barrier for nuclear spins in the vicinity of the unpaired electron. The dipolar magnetic field of the unpaired electron is differently shifting the resonance frequencies of the nuclear spins at different spatial positions. At close distances, the difference of the nuclear spins
  • ’ frequencies exceeds the strength of their mutual nuclear dipole–dipole interaction so that their mutual flip-flop process is inhibited. Thus, nuclear spin diffusion stops close to the unpaired electron, at a distance which is referred to as a diffusion barrier for nuclear spins. The radius of the spin
  • diffusion barrier d is estimated to be about d ≈ 1 nm [38]. The parameter m (Equation 2) is expected to be larger if d is reduced. This point has to be kept in mind when studying the electron spin decoherence for different paramagnetic centers. For complexes P1 and P2 studied in the present work we do not
PDF
Album
Full Research Paper
Published 27 Apr 2017

Advances in the fabrication of graphene transistors on flexible substrates

  • Gabriele Fisichella,
  • Stella Lo Verso,
  • Silvestra Di Marco,
  • Vincenzo Vinciguerra,
  • Emanuela Schilirò,
  • Salvatore Di Franco,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Amaia Zurutuza,
  • Alba Centeno,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2017, 8, 467–474, doi:10.3762/bjnano.8.50

Graphical Abstract
  • still high in combination with a plastic substrate such as PEN, for which the glass transition temperature is ≈155 °C. Using ALD it is possible to grow at lower temperatures as reported in the case of plastic coating and gas diffusion barrier fabrication [18]. However, with reducing the temperature, the
PDF
Album
Full Research Paper
Published 20 Feb 2017

Effect of SiNx diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol–gel dip coating and reactive magnetron sputtering

  • Mohamed Nawfal Ghazzal,
  • Eric Aubry,
  • Nouari Chaoui and
  • Didier Robert

Beilstein J. Nanotechnol. 2015, 6, 2039–2045, doi:10.3762/bjnano.6.207

Graphical Abstract
  • effect of the thickness of the silicon nitride (SiNx) diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol–gel) and physical methods
  • (reactive sputtering) are affected differentially by the intercalating SiNx diffusion barrier. Increasing the thickness of the SiNx diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol–gel process. However, TiO2 obtained using the reactive sputtering method
  • films obtained by each process was discussed. Keywords: diffusion barrier; photocatalysis; reactive sputtering; SiNx; sol–gel; titanium dioxide film; TiO2; Introduction Titanium dioxide thin films in active phase (mostly anatase) have been widely studied due to their ability to produce strong oxidant
PDF
Album
Full Research Paper
Published 16 Oct 2015

The gut wall provides an effective barrier against nanoparticle uptake

  • Heike Sinnecker,
  • Thorsten Krause,
  • Sabine Koelling,
  • Ingmar Lautenschläger and
  • Andreas Frey

Beilstein J. Nanotechnol. 2014, 5, 2092–2101, doi:10.3762/bjnano.5.218

Graphical Abstract
  • covered by the glycocalyx, a dense mesh of glycostructures [20], and mucus, a lubricant and gel-like diffusion barrier, is constantly released by goblet cells [21]. If these first lines of defense are penetrated the trans- and paracellular way is strictly controlled by the enterocytes which are connected
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2014

Imaging the intracellular degradation of biodegradable polymer nanoparticles

  • Anne-Kathrin Barthel,
  • Martin Dass,
  • Melanie Dröge,
  • Jens-Michael Cramer,
  • Daniela Baumann,
  • Markus Urban,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2014, 5, 1905–1917, doi:10.3762/bjnano.5.201

Graphical Abstract
  • would expect. But a 5 nm layer of PLLA cannot be considered as a diffusion barrier in this case and so the UV–vis result reasonably proves the existence of the additional layer covering the magnetite particles. Accordingly, the magnetite particles are intimately connected to the PLLA particle. When
PDF
Album
Full Research Paper
Published 29 Oct 2014

Magnesium batteries: Current state of the art, issues and future perspectives

  • Rana Mohtadi and
  • Fuminori Mizuno

Beilstein J. Nanotechnol. 2014, 5, 1291–1311, doi:10.3762/bjnano.5.143

Graphical Abstract
PDF
Album
Review
Published 18 Aug 2014

Adsorption of the ionic liquid [BMP][TFSA] on Au(111) and Ag(111): substrate effects on the structure formation investigated by STM

  • Benedikt Uhl,
  • Florian Buchner,
  • Dorothea Alwast,
  • Nadja Wagner and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2013, 4, 903–918, doi:10.3762/bjnano.4.102

Graphical Abstract
  • is mainly determined by two parameters, by the surface diffusion barrier, i.e., the activation barrier for the motion of individual adsorbed species between two adjacent adsorption sides, and the interactions between adjacent adsorbates (adsorbate–adsorbate interactions). The fact that the IL
  • adsorbates form islands at low temperatures is a clear proof for the existence of attractive adsorbate–adsorbate interactions between the adsorbed IL species. Furthermore it shows that the adsorbate–adsorbate interactions exceed the strength of the surface diffusion barrier, since otherwise the IL adsorbates
PDF
Album
Full Research Paper
Published 16 Dec 2013

Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films

  • Jörg Haeberle,
  • Karsten Henkel,
  • Hassan Gargouri,
  • Franziska Naumann,
  • Bernd Gruska,
  • Michael Arens,
  • Massimo Tallarida and
  • Dieter Schmeißer

Beilstein J. Nanotechnol. 2013, 4, 732–742, doi:10.3762/bjnano.4.83

Graphical Abstract
  • been investigated for several applications like surface passivation or encapsulation in organic and inorganic photovoltaic devices [1][2], interfacial buffering for high-k dielectrics [3][4], organic memories [5], and nano-laminates [6] as well as work function modification [7], gas diffusion barrier
PDF
Album
Full Research Paper
Published 08 Nov 2013

Ni nanocrystals on HOPG(0001): A scanning tunnelling microscope study

  • Michael Marz,
  • Keisuke Sagisaka and
  • Daisuke Fujita

Beilstein J. Nanotechnol. 2013, 4, 406–417, doi:10.3762/bjnano.4.48

Graphical Abstract
  • energy is in good agreement with diffusion energies for Au on HOPG [22] (Ed ≤ 0.3 eV) and Ni in graphite [23] (Ed = 0.807 eV), noting that the diffusion barrier at the surface is smaller than in the bulk. These two regimes are also evident in the dependency of the number of clusters, cluster size and
PDF
Album
Full Research Paper
Published 28 Jun 2013

Improvement of the oxidation stability of cobalt nanoparticles

  • Celin Dobbrow and
  • Annette M. Schmidt

Beilstein J. Nanotechnol. 2012, 3, 75–81, doi:10.3762/bjnano.3.9

Graphical Abstract
  • for the alcohol-treated samples. In order to gain insight into the influence of the size of the stabilizing agent, and thus the shell thickness, and to explore the possibility of employing polymer shells as an oxygen diffusion barrier, we subjected two species of cobalt core/polymer shell particles to
PDF
Album
Supp Info
Letter
Published 30 Jan 2012
Other Beilstein-Institut Open Science Activities